Unipolar resistive switching and current flow mechanism in thin film SnO2

, , , , , ,
,

Keywords: ,

Non-volatile memories play a very important role in modern day electronics. In harsh environments such as space and weapons systems, radiation-hardness is an essential requirement. Radiation-hardening-by-design is an effective solution which is based on redundancy and is implemented in layout and architecture.Importantly, memristors are inherently radiation-hardened since information is stored as a structural change and not as electronic charge. Although different material systems have been investigated for resistive switching; SnO2 has received little attention even though it has excellent electronic properties and has a large Frenkel defect energy of 7 eV which makes it resistant to displacement and ionization damage. In this paper, we will report the unipolar resistive switching of SnO2-based memristors by RF magnetron sputtering using Sn target in an O2 atmosphere. Unipolar resistive switching at low voltages, than previously reported work was observed. Current flow mechanism was also investigated and the high resistance state current flow through the SnO2 was found different from previously reported work.

PDF of paper:


Journal: TechConnect Briefs
Volume: 3, Nanotechnology 2014: Electronics, Manufacturing, Environment, Energy & Water
Published: June 15, 2014
Pages: 33 - 36
Industry sectors: Advanced Materials & Manufacturing | Sensors, MEMS, Electronics
Topics: Nanoelectronics, Printed & Flexible Electronics
ISBN: 978-1-4822-5830-1