Nanotech 2014 Vol. 2
Nanotech 2014 Vol. 2
Nanotechnology 2014: MEMS, Fluidics, Bio Systems, Medical, Computational & Photonics

Inkjets, Micro & Nano Fluidics Chapter 2

Superhydrophobic 3D Printed Surfaces by Dip-Coating

Authors: A. Milionis, E. Loth, I.S. Bayer

Affilation: University of Virginia, United States

Pages: 157 - 160

Keywords: superhydrophobic, 3D printing, dip-coating, ABS

Here we demonstrate a technique to fabricate three-dimensional superhydrophobic patterns. First a three-dimensional pattern was designed by 3D printing using acrylonitrile butadiene styrene (ABS) as printing material. A linear printing algorithm is followed for the construction of the cube. The apparent static contact angle of water on the surface (before dip coating) was measured 68° with a goniometer facing perpendicular to the printed lines of the cube. The water adhesion was high so that the water drops were remaining pinned on the surface even for 90° tilt angle. In order to render this pattern superhydrophobic, the printed pattern is immersed into polymer-particle dispersion for a few seconds and then left to dry in an oven at 80°C. After the pattern dried, the APCA was measured again and found to be 159° while the droplets were rolling off at 5°. Such an approach can be used to manufacture novel three-dimensional biotechnological and microfluidic devices where the control of surface wetting is crucial. Currently, research is in progress for incorporating our technology in more sophisticated 3D patterns and to explore different applications.

ISBN: 978-1-4822-5827-1
Pages: 570
Hardcopy: $209.95

2015 & Newer Proceedings

Nanotech Conference Proceedings are now published in the TechConnect Briefs

NSTI Online Community