Application of Magnetic Nanoparticles for Wastewater Treatment using Response Surface Methodology

, , , ,
,

Keywords: , ,

The removal of contaminants in wastewater treatment process is challenging due to complex substances, time and cost involved thus, advance technologies in the treatment process are necessary. The present study investigates the potential of magnetic iron oxide nanoparticles (Fe3O4) in the development of an efficient wastewater treatment process using central composite face centered (CCF) modeling studies. The result from the CCF was compared with the experimental data. The experimental results showed that Fe3O4 nanoparticles (NPs) could effectively reduce turbidity, color, total organic carbon, total nitrogen, Phosphate, and microbial content (Escherichia coli and Enterobacter) at optimum conditions. Due to the magnetic properties of the NPs, rapid separation with an external magnetic field can be achieved within 10 minutes whilst, it is possible to recover and separate the NPs for regeneration. This reduces the treatment process time, recovery of pollutants, and easy to scale up the process. The present study reveals that unique properties of the magnetic NPs could impart an efficient treatment process.

PDF of paper:


Journal: TechConnect Briefs
Volume: 3, Nanotechnology 2013: Bio Sensors, Instruments, Medical, Environment and Energy (Volume 3)
Published: May 12, 2013
Pages: 690 - 693
Industry sector: Energy & Sustainability
Topic: Water Technologies
ISBN: 978-1-4822-0586-2