Nanotech 2012 Vol. 3
Nanotech 2012 Vol. 3
Nanotechnology 2012: Bio Sensors, Instruments, Medical, Environment and Energy (Volume 3)

Solar, Renewable Energy Technologies & Materials Chapter 6

Electrowetting-driven Solar Trackers for concentrated photovoltaic (CPV) rooftop applications

Authors: S-Y Park, J. Kuo, K. Gould

Affilation: Teledyne Scientific & Imaging, United States

Pages: 403 - 406

Keywords: solar tracker, concentrated photovoltaic (CPV), electrowetting

Concentrated photovoltaic (CPV) technologies, which use additional optics (lenses or mirrors) to concentrate a large amount of sunlight onto a small area of the cells, can reduce the cost of PV systems. One of the key components of CPV systems is a solar tracker that enables to orient the optics toward sun’s position daily and seasonally. However, since a tracker, composed of multiple mechanical moving parts such as motors and supporters, is expensive, complex, bulky, and heavy (loaded weight about ~3000kg for dual-axis trackers). Not only do such complex and heavy mechanical moving parts increase installation and operation cost of the CPV systems, but also require power consumption as high as ~300W for solar tracking. These reasons make CPV technologies difficult to be used for building rooftop integration. Here, we report an optofluidic solar tracker (OFST) that doesn’t need any bulky and heavy mechanical trackers. The electrowetting-driven (i.e. non-mechanical) OFST can provide several unique advantages over conventional mechanical trackers, including (1) extremely low power consumption in the range of ~mW; (2) low cost and simple supporting hardware; (3) wide tracking angle up to ±70° without any mechanical moving parts; and (4) quiet operation for a rooftop application.

ISBN: 978-1-4665-6276-9
Pages: 818
Hardcopy: $209.95

2015 & Newer Proceedings

Nanotech Conference Proceedings are now published in the TechConnect Briefs

NSTI Online Community