Nanotech 2004 Vol. 2
Nanotech 2004 Vol. 2
Technical Proceedings of the 2004 NSTI Nanotechnology Conference and Trade Show, Volume 2

MEMS Modeling Chapter 6

Computationally Efficient Dynamic Modeling of MEMS

Authors: D.O. Popa, J. Critchley, M. Sadowski, K.S. Anderson and G. Skidmore

Affilation: Rensselaer Polytechnic Institute, United States

Pages: 311 - 314

Keywords: O(N) dynamic simulation, nodal analysis

Traditional modeling work in MEMS includes simplified PDE/ODE formulation, based on physical principles, and Finite Element Analysis. More recently, reduced order modeling techniques using Krylov subspace decomposition have been proposed in the context of nodal analysis [1]. This modeling technique makes it possible to predict the dynamic behavior of more complex MEMS, but the computational engine is still a traditional O(N) solver. In this paper we apply a new modeling approach for complex MEMS based on a linear O(N+M) (N- number of bodies, M number of constraints) solver for rigid multibody dynamics. As direct applications, we present simulation and experimental results of models for thermally driven MEMS actuators, compared against other simulation tools, namely FEA (Intellisuite), Sugar 3.0, and AUTOLEV.

ISBN: 0-9728422-8-4
Pages: 519
Hardcopy: $79.95