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ABSTRACT

The influence of the temperature sensitivity of
chemoresistive,  inherently-conductive-polymer  (ICP)
sensors on the performance of an artificial neural network
(ANN) e-NOSE system is evaluated. Temperature was
found to strongly influence the responses of the
chemoresistors. An eNOSE array of eight ICP sensor
elements, arelative humidity (RH) sensor and a resistance
temperature device (RTD) was tested at five different RH
levels while the temperature was allowed to vary naturally.
A temperature correction algorithm based on the
temperature coefficient of resistance, b, for each material
was independently determined and applied to raw sensor
data prior to input to the ANN. Conversely, uncorrected
data was passed to the ANN. The performance of the ANN
was evaluated by determining the error found between the
actual humidity versus the calculated humidity. The error
obtained using raw input data was 10.5% and using
temperature corrected data 9.3%. This negligible difference
demonstrates that the ANN was capable of adequately
addressing the temperature dependence of the
chemoresistive sensors.
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1 INTRODUCTION

The fundamental principles of biological olfaction, such
as nature’s use of arrays of semi-selective sensors and
sophisticated pattern recognitior?, have become the basis
for a whole new generation of analytical instrumentation
called eNOSES®. Inspired by nature, these instruments are
fully capable of vapor-phase chemical detection and
quantification®. In our laboratories we have developed
prototype instrumentation which serves as a test-bed that is
capable of chemical detection and quantification. The
sensor system comprises an array of chemoresistive sensor
elements that are formed from inherently conductive
polymers, a multi-element interrogation protocol, real-time
data acquisition and reduction, integrated pattern
recognition and pattern visualization, and a pattern
recognition neural network to remove inter and intra-
observer bias in the interpretation of patterns. This system

can potentially be used to provide low cost unattended
monitoring of volatile organic compounds (VOCs)
implicated in environmental emissions and occupational
health, as well as for the monitoring of the ambient by
individuals suffering olfactory impairment.

2 BACKGROUND

E-NOSES based on the use of inherently conductive
polymers as chemoresistive devices have been previously
described®. Some have even been successfully
commerciaized®. One major consideration in the use of
ICPs as eNOSE sensory devices is the tremendous
temperature-dependent sensitivity of the resistance’.

2.1 The Sensor Array

The sensory elements are chemoresistive devices
comprising athin film of an inherently conductive material
dispersed in a VOC-swellable polymer matrix and
deposited onto a microlithographically fabricated
interdigitated array. Each element was made from
commercially available microlithograhically fabricated
interdigitated microsensor electrodes (IMEs) shown in Fig.
1. Each IME chip (1.0 cm x 2.0 cm x 0.05 cm) of
magnetron sputtered gold on boraosilicate glass forms a
sensory or transducing element of the sensor array. Eight
such devices comprise an 8-element array. Each element is
rendered VOC sensitive by coating of the interdigit region
with a thin film of a unique, VOC-sensitive inherently
conductive polymer. The metallization pattern on the chip
creates an interdigit region comprised of 50 digits on each
bus. Each digit and adjacent space measured 10 nm. These
regions of interdigitation were each coated with inherently
conductive polymer such that a chemoresistive sensor
device was theresult.
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Figurel: Microfabricated interdigitated microsensor chip
(L) and chemoresistive sensor device (R).




The chemoresistive materials of the sensors were: spun-
cast chemically synthesized polyaniline at two film
thickness levels, electropolymerized polypyrrole of two
different counteranion formulations, electropolymerized
poly-3-methyl thiophene at two film thickness levels, and
single-walled carbon nanotubes  dispersed in
polydimethylsiloxane (two different formulations). These
were combined with a RTD (+ 0.1°C) and a RH sensor
(0.1% RH). These ICP materials are nonspecific and
typically yield conductimetric responses to a wide variety
of gas and vapor molecules. The precise response of a
sensor element varies as the concentration and type of
gas/vapor molecule changes. By using multiple IME
sensing elements, it is possible to generate a unique signal
for vast numbers of compounds; furthermore the signal will
identify not only the species present but also its
concentration.

2.2 ANNsand eeNOSE

Electronic noses that use ANNSs for data analysis have
been demonstrated in various applications®. Using an ANN
in conjunction with a sensor array has been shown to
increase the number of detectable chemicals. The types of
ANN architectures typically used in this application can be
divided into two categories, recurrent and feedforward. The
recurrent architecture uses state feedback information to aid
in the analysis of time dependent data. In the feedforward
architecture al information is propagated forward through
the network.

The types of training can be divided into supervised and
unsupervised training. Supervised training uses a pattern
classifier to relate specific sensor outputs to specific
compounds. Learning occurs when the ANN is presented
with sensor outputs (or measured attributes) and compound
labels. During training, using these input-output training
pairs, the ANN learns to correlate the sensor output to
specific compounds. Supervised algorithms used in
electronic noses include backpropagation, learning vector
quantizer, and fuzzy ARTmaps’. Unsupervised learning
does not require predetermined compound classes for
training. It performs a clustering of the data into similar
groups based upon the measured attributes or features that
serve as inputs to the ANN. Unsupervised algorithms used
in e-NOSEs include self-organizing maps and adaptive
resonant theory networks™’.

In this work a high-speed workstation digitized and
stored the data from the sensor array and ran ANN used to
analyze the data. A three layer feedforward ANN (Fig. 2)
was used for data analysis, with the input layer consisting
of 6, the hidden layer 13, and the output layer 5 processing
elements (PE). Each PE in the input layer received outputs
from each sensor. Each PE in the output layer was sensitive
to a specific challenge level of the candidate vapor. The
ANN was trained using a backpropagation algorithm. The
input to the ANN was a ten element input vector consisting
of the sensor responses, temperature and relative humidity.

The output of the ANN was a five-element output vector
where each parameter represented a specific relative
humidity.
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Figure 2. Feedforward ANN architecture.

2.3 Temperature dependence and e-NOSE

Exposure of the polymer film to vapor leads to a
measurable change in the electrical impedance (resistance)
as the polymer matrix swells and the conductive filaments
are separated. However, temperature is also known to
strongly influence the conductivity of these materials’.
Over small spans of absolute temperature (T) there is an
approximate linear relationship of the form In(Ry) =
A+(b/T) where b is a materials constant of the temperature
responsive material. For aresistance Rr(T) and R (To) at a
reference temperature, Tg, one obtains:

eb(T,- T)u
0 e T TO 1)

The temperature coefficient of resistance, b, can thus be

approximated from the slope of the line In(Ry) vs. UT

(Fig.3).
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Figure 3. Typical plot for determination of the temperature
coefficient of resistance, b.



3 EXPERIMENTAL

The e-NOSE test bed is designed to automate and
regulate the process of gathering experimental data from
the e-NOSE array of chemoresistive sensor elements. It
consists of a gas/vapor manifold subsystem, an
instrumentation control and data acquisition subsystem, and
data analysis and display software. Two input/output
interface cards. a Computer Boards CIO-DAS08Jr/16-A0
and a National Instruments GPIB card were used to control
and regulate gas/vapor flow through the manifold
subsystem and for instrument control and data acquisition
from a Model 2010/Model 2000 Multimeter/Multiplexer
(Keithley, Chicago, IL) respectively.

Three separately controllable Mass-Flow Controllers
(MFP 100, 10, 1 scc/min, Cole-Palmer, Vernon Hills, IL)
and electronically actuatable solenoid valves regulated the
flow of a pure carrier gas stream of purified dry nitrogen
over the array. A bypass stream comprising afraction of the
gas flow was bubbled trough areservoir of DI water held at
constant temperature. Heating and cooling of the reservoir
was provided by a compact, solid state thermoelectric stage
(Melcor Corp., Trenton, NJ). By maintaining a constant
flow rate of 20 scc and selectively varying the ratio of pure
carrier gas to vapor-containing stream, a wide range of RH
vapor streams could be presented to the array. The data
acquisition and instrument control software was written in
TestPoint (Capital Equipment Corporation, Billerica, MA).
Raw resistance data was streamed to M S Excel, normalized
(Rn = (Rt-Rg)/Ry) and plotted versus time.

Exposure tests were performed by varying the
percentage of the 100 % RH vapor stream that was blended
into the pure carrier gas stream. In this way RH values of
10, 20, 30, 40 and 50% were studied. Temperature
dependence of the responses of the individual elements of
the sensor array was measured under constant RH
conditions. The expose pattern typically comprised a two-
phase exposure cycle within which the first was a 30-min.
phase of exposure to pure carrier gas. This was followed by
a 30-min phase of exposure to the appropriate level of RH.

4 RESULTSAND DISCUSSION

Temperature was found to strongly influence the
chemoresistive responses of the sensors. Therefore it was
necessary to ensure that the temperature dependence of the
sensors output was adequately accommodated by the
ANN. To test this idea, the system was subjected to the
analysis of relative humidity at five levels and the
temperature was allowed to vary naturally. The temperature
dependence of each sensor’s resistance was determined by
holding the humidity constant and measuring the variation
of the sensor’s resistance. Fig. 4 shows how the normalized
resistance, Ry, of sensor three changed as the temperature
varied between 23 and 25 degrees centigrade.
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Figure 4. Typica temperature dependence of the
chemoresistive VOC sensors.

The temperature coefficient of resistance, b, for each
sensor was determined from the slope of the line In(Ry) vs.
VT (Fig. 3). Recognizing that the raw sensor output data
contained the confounding influences of both humidity and
temperature, the humidity-only responses were isolated by
performing a temperature correction to the raw data. This
was done by subtracting the temperature-corrected
resistance from the raw measured resistance. This in effect
removed the influence of the temperature dependence of the
resistance of the sensor from the data. Figure 5 and Figure 6
show examples of normalized raw and temperature-
corrected data of sensor element 3 in response to 30% RH
respectively.
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Figures 5 Normalized raw sensor data for sensor
element 3.
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Figure 6. Normalized temperature-corrected sensor data
for sensor element 3.
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The ANN was trained and tested on the temperature-
corrected data and conversely on the raw sensor data. The
input to the ANN was a ten element input vector consisting
of the 8 chemoresistive sensor responses, temperature and
relative humidity. The output of the ANN was a five-
element output vector where each parameter represented a
specific relative humidity. The ANN was trained and tested
on the temperature-corrected data using a training set size
of 500 and a test set size of 50. The ANN was also
separately trained and tested on the raw sensor output data
using similar set sizes. Table 1 summarizes the vector
outputs obtained for an unknown challenge of 36.5% RH.

10% 20% 30% 40% 50%
0.0028 0.0021 | 0.4297 | 0.5465 | -0.0300

Table 1: ANN vector outputs for a 36.5% RH challenge.

The vapor concentration (RH) from the ANN output
vector was determined using Equation 2.

o
o0.C

Calculated humidity = —s—— ©)
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where o; is the output of the in output processing element
and ¢ is the concentration assigned to the i"" output
processing element.

For the above example the calculated humidity of
35.3% was obtained. The difference between the calculated
humidity and the actual humidity (as measured by the
internal humidity sensor) reveals an error term. This error
term was used to evaluate the performance of the ANN
given the two input data sets. The influence of the raw
sensor data and the temperature-corrected data were
compared in thisway over arange of relative humidity.
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The performance of the neural network was evaluated
(given the two types of input data) by determining the error
found between the actual humidity and the calculated
humidity. The magnitude of the error was used as the basis
for comparison between the two types of input data. The
error obtained using raw input data was found to be 10.5%
and using temperature corrected data 9.3%. This negligible
difference demonstrated that the ANN was capable of
adequately addressing the temperature dependence of the
chemoresistive sensors. The neural network was found to
successfully and accurately identify the correct RH given a
vapor steam.

5 CONCLUSION

A feedforward ANN is shown to adequately address the
variation in chemoresistive response that arises from
confounding changes in temperature. This ability is clearly
enhanced because temperature is one of the several sensor
inputs passed to the ANN. This makes a strong case for the
inclusion of inexpensive, mass-produced, laser-trimmed
RTDs as sensory elements in various types of multi-
element array electronic noses.
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