Nanotech 2014 Vol. 2
Nanotech 2014 Vol. 2
Nanotechnology 2014: MEMS, Fluidics, Bio Systems, Medical, Computational & Photonics

Photonic Materials & Devices Chapter 7

Plasmon-enhanced Optical Rotation in Nanostructured Metasurfaces

Authors: Y.H. Kim, F. Alali, E.P. Furlani

Affilation: University at Buffalo, SUNY, United States

Pages: 427 - 430

Keywords: metamaterials, metasurface, plasmonics, optical rotation, plasmon-enhanced linear birefringence, chiral metamaterials

Advancements in nanotechnology have enabled the realization of unique artificial materials for applications in the field of nanophotonics. Such metamaterials are engineered with sub-wavelength features to provide extraordinary optical properties such as negative refraction1, slow light and cloaking2,3 etc. As such, these materials hold promise for transformative advances in fields that include optical imaging, sensing, communications, computing and stealth technology. In this presentation, we propose a new class of metamaterials in the form of ultra-thin nanostructured metallo-dielectric metasurfaces, which are designed to manipulate the polarization state of light and produce giant optical rotation with relatively low loss. These materials are formed from planar arrays of metamolecules that consist of achiral plasmonic nanostructures encapsulated within a chiral-patterned lossless dielectric layer. At plasmon resonance, the sub-wavelength nanoinclusions produce enhanced polarization of the surrounding dielectric, which gives rise to optical rotation in the transmitted field. We demonstrate proof-of-principle for a prototype material consisting of a two-dimensional array of chiral Z-patterned metamolecules that contain an embedded gold nanorod along their length. We also discuss applications of these materials to biosensing.

ISBN: 978-1-4822-5827-1
Pages: 570
Hardcopy: $209.95