Nanotech 2012 Vol. 1
Nanotech 2012 Vol. 1
Nanotechnology 2012: Advanced Materials, CNTs, Particles, Films and Composites (Volume 1)

Graphene Chapter 2

Tunneling Negative Differential Resistance in Flexible Silicone Graphite Composites

Authors: S.D. Littlejohn, A. Nogaret, S. Crampin

Affilation: University of Bath, United Kingdom

Pages: 165 - 168

Keywords: negative differential resistance, graphite, nano-particles, flexible

Developing flexible electronic materials with the ability to amplify signals is a major challenge for bioelectronics. The next step in developing an active nervous system calls for a flexible electronic material that produces a signal gain. The ability to tune the electrical conductivity of the graphene bilayer with an electric field provides a route for addressing this challenge through the generation of negative differential resistance (NDR). We demonstrate a wide NDR region in the current-voltage characteristics of silicone filled with graphitic nanoparticles. At the peak, the conductor breaks up into domains of constant electric field separated by highly resistive domain boundaries. These boundaries are identified as individual graphite nanoparticles whose orientation in the electric field favours conduction across just two graphene layers. Increasing the electric field opens a partial energy gap at the Fermi level which causes the current carrying bilayer to undergo a semimetal-to-insulator transition. This explains the dependence of the I-V curves on the concentration of graphitic nanoparticles, temperature, channel length, as well as the disappearance of the NDR when the graphitic nanoparticles are replaced with amorphous carbon nanoparticles.

ISBN: 978-1-4665-6274-5
Pages: 804
Hardcopy: $209.95

2015 & Newer Proceedings

Nanotech Conference Proceedings are now published in the TechConnect Briefs

NSTI Online Community